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We developed a method to systematically control experimental inconsistency, which is one of the most
troublesome and difficult problems in high-throughput combinatorial experiments. The topic of experimental
inconsistency is never addressed, even though all scientists in the field of combinatorial materials science
face this very serious problem. Experimental inconsistency and material property were selected as dual
objective functions that were simultaneously optimized. Specifically, in an attempt to search for promising
phosphors with high reproducibility, photoluminescence (PL) intensity was maximized, and experimental
inconsistency was minimized by employing a multiobjective evolutionary optimization-assisted combinatorial
materials search (MOEO combinatorial material search) strategy. A tetravalent manganese-doped alkali earth
germanium/titanium oxide system was used as a model system to be screened using MOEO combinatorial
materials search. As a result of MOEO reiteration, we identified a halide-detached deep red phosphor with
improved PL intensity and reliable reproducibility.

1. Introduction

Combinatorial materials science based on high-throughput
experimentation (HTE) has evolved considerably in recent
decades and its applications now include a variety of
materials.1-16 Recently, combinatorial materials science has
shifted from “simple-mixing” to “smart-mixing” strategies.
A smart-mixing strategy that has attracted considerable
interest is genetic algorithm-assisted combinatorial materials
search (GACMS).21-28 The use of genetic algorithms is one
of the most efficient stochastic optimization strategies
employed to solve multidimensional problems.17-20 In this
regard, the combination of GA and HTE results in a highly
efficient system that enables the development of new
materials and catalysts.21-30 For instance, we have identified
some promising luminescent multicompositional inorganic
compounds using GACMS.29,30

No matter which strategy is adopted for HTE-based
optimization processes, minimization of experimental error
is critical. Error-free experimental processes are also very
important in GACMS because evaluation of an unknown
objective (either fitness or cost) function is performed by
actual synthesis and subsequent characterization. Experi-
mental evaluation of an unknown objective function always
gives rise to experimental error or inconsistency. Thus, in
our previous reports, we dealt with experimental inconsis-
tency in two ways.29,30 We reproduced elitized members and,
subsequently, regarded them as indicators of inconsistency.

Alternatively, we conducted confirmative, auxiliary experi-
ments, wherein a replicate of each library was produced, such
that differences between the original and replicate libraries
were closely monitored. These methods yielded a stopping
criterion indicating the point at which the process should be
aborted. However, we failed to systematically control
experimental inconsistency because of a misunderstanding
of the problem. As a result, many experiments, consuming
enormous effort, time, and monetary resources, proved futile
because of inconsistency during the GACMS process. In our
experience, failed experiments occur more frequently than
do successful experimental processes that lead to public-
ations.29,30

Experimental inconsistency may be caused by external
factors, such as imperfect experimental apparatuses, envi-
ronmental effects, or investigator error. However, extrinsic
error can be reduced to an acceptable level by use of
sophisticated methods. In addition, we have characterized
extrinsic error to minimize its influence during the current
stage of development. What interests us most is not the
controllable extrinsic error, but the intrinsic error that cannot
be easily controlled because its origin is unknown. In contrast
to the readily identifiable causes of extrinsic error, the most
problematic and troublesome intrinsic error originates from
uncontrollable solution behaviors. Because the precursor
solutions used in our experiments contained at least six
cations, it was nearly impossible to discern either the
behavior of each cation or the more complicated interactions
among cations in the mixture during the GACMS process.
The ensuing solid-state syntheses should also have intrinsic
inconsistency. The presence of inconsistency in the solid-
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state synthesis is inevitable as argued by Jansen,31 wherein
the inherent unpredictability of synthesis in the solid state
was discussed. Thus, it is reasonable to hypothesize that
experimental inconsistency is strongly dependent on the
composition of the precursor solution and to therefore treat
experimental inconsistency as a function of composition.
Therefore, the experimental inconsistency can be considered
an unknown objective function that is minimized during the
GACMS process. One of possible approaches to simulta-
neously minimize experimental inconsistency and optimize
material properties is a multiobjective evolutionary optimiza-
tion (MOEO). Therefore, we used an MOEO-assisted com-
binatorial materials search to identify promising phosphors.
Specifically, we set both the luminescent intensity and the
inconsistency index, which is the relative difference in
photoluminescence (PL) intensity between two compounds
with identical compositions from separately prepared librar-
ies, as objective functions in our MOEO-assisted combina-
torial material search process. As expected, MOEO-assisted
combinatorial material search allowed for simultaneous
maximization of PL intensity and minimization of the
inconsistency index.

2. Multiobjective Evolutionary Optimization (MOEO)

The genetic algorithm (GA) is one of the most widely used
evolutionary optimizations. GA is a stochastic global search
method that mimics natural biological evolution. A GA
operates on a population of potential solutions, applying
Darwin’s principle of survival of the fittest. GAs use
techniques such as inheritance (elitism), mutation, selection,
and crossover. GAs make populations evolve, that is, they
make individuals that are better suited to their environment
survive. The evolution usually starts from a population of
randomly generated individuals (randomly generated phos-
phor composition in the present case). In the first generation,
the fitness (one of the phosphor properties in the present case,
e.g., luminescent intensity) of every individual in the
population is evaluated; multiple individuals are stochasti-
cally selected from the current population based on their
fitness (e.g., roulette-wheel or tournament selection) and
modified by crossover and mutation to form a new popula-
tion. The new population is then used in the next iteration
of the algorithm. The string of decision parameters (com-
position of phosphors in the present case) represented in
binary codes is regarded as a chromosome and each
parameter can be thought of as a gene.17-19

Multiobjective optimization problems (MOP) consist of
multidimensional decision vectors and multidimensional
objective vectors. In the present case, we have six decision
parameters and two objective functions.

y) {f1(x) : Maximize, f2(x) : Minimize} ∈ Y

where x) {x1, x1, x3, ..., x6} ∈ X

X stands for a decision parameter space, x is a decision
parameter vector, and x1-6 are decision parameters. Y stands
for an objective function space, y is an objective function
vector, and f1(x) and f2(x) are objective functions. Namely,
the first objective function, f1(x), which is maximized, is
luminescent intensity. The second objective function, f2(x),

which is minimized, is the inconsistency index. The phosphor
composition, that is, the mole fractions of Ca, Ba, Mg, Ge,
Ti, and Mn, is represented by x1-6. An important issue for
MOPs is Pareto optimality,18,32-39 which determines the
relative dominance of the luminescent intensity and incon-
sistency index.

The basic algorithm of GAs has been extended to solve
problems with multiple objectives. The goal of the multi-
objective optimization is to find a set of nondominated
solutions (ideally with a good spread) by the assist of genetic
algorithm. For this sake, Fonseca Fleming34 proposed the
multi-objective genetic algorithm (MOGA), and Srinivas and
Deb36 proposed the nondominated sorting genetic algorithm
(NSGA). Both approaches consist of a similar scheme in
which the rank of a certain individual is determined.
Accordingly, the main concept of MOGA and NSGA is the
same in principle. They slightly differ in the way of deciding
ranks and assigning fitness values. We adopted NSGA36-38

in the present investigation. NSGA has been described in
detail in literature,32-39 NSGA is based on several layers of
classifications of the individuals. Before selection is per-
formed (roulette wheel selection was used), the population
is ranked on the basis of domination (using Pareto ranking):
all nondominated individuals are classified into one category
with a dummy fitness value. To maintain the diversity of
the population, these classified individuals are shared with
their dummy fitness values. Then this group of classified
individuals is removed from the population, and another layer
of nondominated individuals is considered (i.e., the remainder
of the population is reclassified). The process continues until
all individuals in the population are classified. Since indi-
viduals in the first front have the maximum fitness value,
they always get more copies than the rest of the population.
This allows us to search for nondominated regions (Pareto
fronts) and results in convergence of the population toward
such regions. The algorithm is similar to a simple GA, except
for the classification of nondominated fronts and the sharing
operation. Fitness sharing, so-called niche sharing or niching,
helps to distribute the population over this region.18,35-39

Fitness sharing disperses densely populated regions. It
lowers each population element’s fitness by an amount nearly
equal to the number of similar individuals in the population.
Typically, the shared fitness, fi′, of an individual with fitness
fi is simply fi′ ) fi/mi, where mi is the niche count which
measures the approximate number of individuals with whom
the fitness fi is shared. The niche count is calculated by
summing a sharing function over all members of the current
Pareto front.

mi )∑
j

N

sh(dij)

sh(dij)) { 1- ( dij

σshared
) if dij < σshared

0 otherwise
, σshared )

√k

√p

Where N denotes the population size and dij represents the
distance between individuals. Thence, the sharing function
sh(dij) measures the similarity level between two population
elements. σshare denotes the threshold of dissimilarity (also

132 Journal of Combinatorial Chemistry, 2009 Vol. 11, No. 1 Sharma et al.



the distance cutoff or the niche radius), where k is the number
of dimensions and p is the population size of the current
Pareto front. Finally, the shared fitness value of each
individual is calculated by dividing its dummy fitness value
by its niche count. The completion of the fitness sharing leads
to GA routines such as roulette-wheel selection, crossover,
and mutation. Details about this general GA implementation
after the fitness sharing processes are well described in our
previous works.29,40

3. Experimental Procedures

The MnO-CaO-BaO-MgO-GeO2-TiO2 six-dimen-
sional library compositions were prepared and screened using
the solution-dependent combinatorial library method based
on a high-throughput screening technique. All chemicals such
as manganese nitrate hydrous (Mn(NO3)2 · xH2O), calcium
nitrate hydrous (Ca(NO3)2 · xH2O), barium nitrate (Ba(NO3)2),
magnesium nitrate hydrous (Mg(NO3)2 · 6H2O)), 3,3′-(1,3-
dioxo-1,3-digermoxanediyl)bispropionic acid (C6H10Ge2O7),
and titanium(IV)(triethanolaminato)-isopropoxide (80 wt %
solution in propanol) (C9H19NO4Ti) were prepared in deion-
ized water. Organic precursors, such as 3,3′-(1,3-dioxo-1,3-
digermoxanediyl)bispropionic acid, commonly known as Ge-
132, and titanium(IV)(triethanolaminato)-isopropoxide (80
wt % solution in propanol), underwent special treatment. Ge-
132, which is insoluble in water at high concentrations, was
prepared in warm water at 30 °C. The Ti(IV) solution, which
precipitates with other solutions at high concentrations, was
prepared in a solution of citric acid (0.1 M). Therefore, the
concentrations of Ge-132 and Ti (IV) were less than the
concentrations of the other solutions. The total volume of

one library was increased to 14 mL to obtain an adequate
amount of compound. The calculated volume of each solution
for every generation was then pipetted into a 16 × 150 mm
test tube, according to the composition table. For each
generation, 54 solutions were prepared. The solutions were
then dried at 85-130 °C for 96 h in an oven. The samples
were heated in a box furnace in a stepwise manner, that is,
300 °C/3 h, to prevent rapid evaporation. Dried samples were
gently pulverized and heated again at 600 °C/3 h. The dried
samples were pulverized and transferred to a specially
designed alumina “combichem”container,29 in which they
were heated at 1150 °C for 20 h in an oxidizing atmosphere
so as to keep manganese in the Mn4+ state. This process
was repeated once for each generation to produce a replicate
that was used to estimate the inconsistency index.

The emission spectrum was measured at an excitation
wavelength of 254 nm in continuous wave (CW) mode at
wavelengths ranging from 450 to 800 nm at room temper-
ature using a spectrophotometer (Professional Scientific
Instrument Ltd. Co., PS-PLU-X1420) equipped with a
deuterium lamp. The excitation spectrum was measured at
a probing wavelength of 661 nm over a range of 220-500
nm. X-ray powder diffraction patterns were measured using
Cu KR radiation at 40 kV and 30 mA (Panalytical X’pert
Pro Pw 3060 MRD).

4. Results and Discussions

A tetravalent manganese-doped alkali earth germanium/
titanium oxide system (MnO-CaO-BaO-MgO-GeO2-
TiO2 six-dimensional compositions), which emits a deep red

Figure 1. Photographs of each generation and replicate. The first row of a, b, c, d, and e shows of generations 1-5, and the second row
shows the replicates under excitation at 254 nm, respectively. The generation number increases from left to right. Direct comparison among
these photographs is appropriate, as all the photographs were taken under the same conditions. Nevertheless, improvements in both PL
intensity and consistency are clearly evident.
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color, was screened by NSGA-assisted combinatorial material
search using PL intensity and the inconsistency index as
objective functions. PL intensity, which was maximized, was
the first objective function. The inconsistency index, which
was minimized, was our second objective function. The
compositions of library members were treated as decision
parameters. The variance in measured PL intensity for each
composition should provide a superior indicator of experi-
mental inconsistency. However, it should be noted that
generation of a large amount of statistical data is impractical,
even though HTE techniques are used. Therefore, the
inconsistency index was determined from only two separate
libraries. For this reason, we termed this measure the
inconsistency index, rather than variance. The inconsistency
index appears to be an adequate indicator of experimental
inconsistency.

Figure 1 and Figure 2 show five libraries (generations)
photographed under 254-nm excitation and graphs exhibiting
Pareto sorting for each generation. As NSGA was reiterated
to the fifth generation, both the PL intensity and experimental
inconsistency improved, resulting in identification of a
phosphor with improved PL intensity and high reproduc-
ibility. Figure 1 clearly shows that the number of promising
members (bright-red-light-emitting members) increased in
the later generations. For example, in the first generation,
approximately 27 out of 54 members were unacceptable,
exhibiting either no light emission or nonred-light emission;

however, in the fifth generation, only 10 of 54 members were
unacceptable. The non-red-light emission originates from
divalent-manganese-activated samples that we intended to
eliminate. The presence of the undesirable divalent manga-
nese samples is a nearly unavoidable complication, which
is not easy to control experimentally because the valence
state changes with the composition, even under constant
processing conditions. The presence of divalent manganese
increased the experimental inconsistency. Relative to the first
generation, which was randomly defined, later generations
that underwent evolutionary improvement exhibited signifi-
cant improvements in the inconsistency index. While the
photographs in Figure 1 allow only rough estimation of PL
intensity and the inconsistency index, Figure 2 shows a
Pareto front for each generation.

By coincidence, we found only one sample in the first
Pareto front of the fifth generation. The performance of this
sample was outstanding in terms of both PL intensity and
experimental consistency. Specifically, the PL intensity was
at the maximum, and the inconsistency index was almost
zero. This implies that the method gave the same result on
two separate occasions, thereby suggesting highly reliable
reproducibility of sample preparation. This sample, hereafter
referred to as sample S, was reproduced several more times
to achieve complete reproducibility. Subsequently, reproduc-
ibility was validated.

After demonstrating the efficacy of our NSGA-assisted
combinatorial material search, we next investigated the
effects of material composition. First of all, it should be noted
that the six-dimensional composition system (MnO-CaO-
BaO-MgO-GeO2-TiO2) that we screened in the present
investigation was very similar to our previous system
(MnO-CaO-SrO-BaO-MgO-GeO2) that implemented
only by single objective GA, as recently reported.40 Because
our primary objective was to confirm the validity and
practicality of our NSGA-assisted combinatorial material
search approach that used both PL-intensity maximization
and experimental-inconsistency minimization, we needed a
model system for which the optimal point could be easily
predicted based on our previous report. Therefore, we
adopted a composition system similar to that used in our
previous report.

The only difference between the present and previous
systems was the inclusion of TiO2 and the exclusion of SrO.
In spite of these differences, the composition of sample S
was similar to that of the final samples that we fully
optimized in the previous report.40 Thus, in both studies, the
optimization processes occurred in the same direction and
ultimately gave identical optimal structures, which was
revealed to be Mg14Ge5O24:Mn4+ with a small amount of
Ca-doping. In our previous report, we did not focus on the
role of Ca-doping,40 even though it was clear that Ca-doping
was partly responsible for the enhancement of luminescence.
The results of the present study confirm the positive effects
of Ca-doping on luminescence.

Figure 3a shows the emission and excitation spectra of
sample S. The narrow bands constituting the emission spectra
originated from Jahn-Teller splitting of 4F2f

4A2 transitions
of Mn4+ (d3) ions.41 The XRD pattern of sample S is

Figure 2. Pareto surface for each generation. A Pareto surface for
each generation by plotting average PL intensity vs the inconsis-
tency index value. Each Pareto surface-front is shown in a unique
color, for example, the first and second Pareto fronts are shown in
black and red, respectively, and data points are also shown. (The
composition table for all members, exact average intensity, and
inconsistency index values are presented in the Supporting Informa-
tion.)
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presented in Figure 3b, together with a standard from the
Joint Committee on Powder Diffraction Standards (JCPDS).
The inset in Figure 3b exhibits the composition table
exhibiting the processing composition of sample S, along
with the results from the elemental analysis using energy
dispersive spectroscopy (EDS). The EDS analysis is powerful
for a rough measure of composition but is not 100% correct.
However, the coincidence was detected between the XRD
and the EDS result, within an acceptable experimental error
range, reflecting that the exact composition of sample S is
Ca-co-doped Mg14Ge5O24:Mn4+. The processing composition
of sample S is slightly different from the actual stoichiometry,
Mg14Ge5O24. For instance, the (Ca + Mg + Mn)/Ge ratio
of sample S in terms of processing composition was
approximately 3.5, which was slightly higher than the Mg/
Ge ratio of Mg14Ge5O24. It is customary to be faced with
such an excessive alkali earth elements in liquid solution-
based syntheses.30,40 It is manifest that if we had adopted
the exact stoichiometry (Mg14Ge5O24) at the initial composi-
tion design stage of the synthesis process, we would never
have gotten to it. In this regard, the excessive amount of
alkali earth elements is necessary to achieve the
Mg14Ge5O24 stoichiometry. The processing composition
is based on trial-error strategies in general solution-based
syntheses. Thus, this cumbersome process is time-
consuming and expensive. However, it should be noted
that the NSGA-assisted combinatorial material search
process guided us to do this automatically without any
high-cost endeavors nor in-depth consideration. More
importantly, the NSGA-assisted combinatorial material
search process enabled us to complete these procedures
with high precision and reliable reproducibility in a very
short time frame.

Sample S was codoped with very small amounts of
calcium. It is noteworthy that evolution of the process
resulted in elimination of the Ti and Ba codopants. Sample
S consisted mostly of Mg14Ge5O24. It should be noted that
the structures of Mg14Ge5O24 compounds are well-known,42

and several similar compounds that incorporate divalent
manganese are red phosphors.43-47 However, tetravalent
manganese-activated Mg14Ge5O24 systems have never been
considered as phosphors. Although the emission of Mg14Ge5-
O24:Mn4+ phosphors is less efficient than that of well-known
halide-involved magnesium germanate systems, such as
Mg2Ge8O11F2:Mn4+, the color chromaticity of Mg14Ge5O24:
Mn4+ phosphors (CIE x ) 0.71, CIE y ) 0.29) is as good
as that of the Mg2Ge8O11F2:Mn4+ phosphor. The Ca-co-
doped Mg14Ge5O24:Mn4+ phosphor, which was identified
using NSGA-assisted combinatorial material search, has
potential as a deep-red phosphor for cold cathode fluorescent
lamps (CCFL) in liquid crystal displays (LCD). Thus, the
primary goal of this study, development of a halide-detached
deep-red phosphor based on Mn4+ activated oxide system,
was achieved. It should be noted that the inclusion of halides
into the phosphor host structure is generally disadvantageous
in both use and preparation.

5. Conclusion

In summary, we developed a method for the systematic
control of experimental inconsistency, which is one of the
most troublesome and difficult problems in high-throughput
combinatorial experiments. The topic of experimental in-
consistency has previously not been addressed, even though
it is a very serious problem faced by all scientists in the
field of combinatorial materials science. NSGA-assisted
combinatorial material search was employed to screen
tetravalent manganese-doped alkali earth germanium/titanium
oxide systems to reproducibly identify deep-red phosphors.
NSGA-assisted combinatorial material search effectively
facilitated the search process and made it possible to control
and, eventually, minimize experimental inconsistency in a
systematic manner. Previously, experimental inconsistency
was not accounted for systematically. Thus, we suggest that
experimental inconsistency should be addressed in all types
of HTE processes. Furthermore, NSGA-assisted combina-

Figure 3. Excitation, emission, and XRD pattern of best sample S. (a, left panel) Excitation (left spectrum) and emission spectra (right
spectrum) obtained for sample S, (b, right panels) XRD analysis of sample S (top), and a standard (bottom). The inset in the XRD graph
of Sample S shows the results from the elemental analysis using energy dispersive spectroscopy (EDS) along with the real composition
(top).
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torial material search is currently one of the most promising
strategies to deal with experimental inconsistency. NSGA-
assisted combinatorial material search process is highly
recommended to those who encounter experimental incon-
sistency during the development of solution-synthesis-based
combinatorial libraries.

In the model system that we used to determine the efficacy
of our NSGA-assisted combinatorial material search method,
five generations, including 270 phosphor samples and their
replicates, were produced, and we finally identified the
phosphor with maximal PL intensity and minimal experi-
mental inconsistency, sample S. Sample S showed promising
luminescence and was reliably reproduced. Phase identifica-
tion of sample S revealed that the main phase of sample S
was Mg14Ge5O24:Mn4+ and that a small amount of calcium-
doping enhanced PL intensity. The promising luminescence
and high reproducibility of sample S are advantageous to
mass production, should the compound be commercialized.
Consequently, this deep-red-emitting oxide phosphor may
be useful in flat panel displays, white-light-emitting diodes,
or even in Si-based solar cell applications, as a down-
converting phosphor.
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